
R2OpenBUGS:

A Package for Running OpenBUGS from R

Sibylle Sturtz∗

Fachbereich Statistik
Universität Dortmund

Germany

Uwe Ligges†

Fachbereich Statistik
Universität Dortmund

Germany

Andrew Gelman‡

Department of Statistics
Columbia University

USA

Abstract

The R2OpenBUGS package provides convenient functions to call OpenBUGS from R. It
automatically writes the data and scripts in a format readable by OpenBUGS for processing
in batch mode, which is possible since version 1.4. After the OpenBUGS process has finished,
it is possible either to read the resulting data into R by the package itself—which gives a
compact graphical summary of inference and convergence diagnostics—or to use the facilities
of the coda package for further analyses of the output. Examples are given to demonstrate
the usage of this package.

Keywords: R, OpenBUGS, interface, MCMC.

An earlier version of this vignette has been published by the Journal of Statistical Software:
Sturtz S, Ligges U, Gelman A (2005): “R2WinBUGS: A Package for Running WinBUGS from R.”
Journal of Statistical Software, 12(3), 1–16. R2OpenBUGS was adapted from R2WinBUGS by
Neal Thomas.

1. Introduction

The usage of Markov chain Monte Carlo (MCMC) methods became very popular within the last
decade. OpenBUGS (Bayesian inference Using Gibbs Sampling, Spiegelhalter, Thomas, Best, and
Lunn 2003) is a popular software for analyzing complex statistical models using MCMC methods.
This software uses Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990; Casella and
George 1992) and the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
1953) to generate a Markov chain by sampling from full conditional distributions. The OpenBUGS
software is available for free at http://www.OpenBUGS.info. An introduction to MCMC methods
is given in Gilks, Richardson, and Spiegelhalter (1996).

Using OpenBUGS, the user must specify the model to run, and to load data and initial values for a
specified number of Markov chains. Then it is possible to run the Markov chain(s) and to save the
results for the parameters the user is interested in. Summary statistics of these data, convergence
diagnostics, kernel estimates etc. are available as well. Nevertheless, some users of this software
might be interested in saving the output and reading it into R (R Development Core Team 2004)
for further analyses. OpenBUGS comes with the ability to run the software in batch mode using
scripts.

The R2OpenBUGS package makes use of this feature and provides the tools to call OpenBUGS
directly after data manipulation in R. Furthermore, it is possible to work with the results after
importing them back into R again, for example to create posterior predictive simulations or, more
generally, graphical displays of data and posterior simulations (Gelman 2004). Embedding in R
can also be useful for frequently changed data or processing a bunch of data sets, because it is
much more convenient to use some R functions (possibly within a loop) rather than using “copy &

∗⟨sturtz@statistik.tu-dortmund.de⟩
†⟨ligges@statistik.tu-dortmund.de⟩
‡⟨gelman@stat.columbia.edu⟩

http://www.OpenBUGS.info

2 R2OpenBUGS:A Package for Running OpenBUGS from R

paste” to update data in OpenBUGS each time; however difficulties have been encountered in this
area because both R and OpenBUGS can lock up RAM in the Windows operating system.

R is a “language for data analysis and graphics” and an open source and freely available statis-
tical software package implementing that language, see http://www.R-project.org/. Histori-
cally, R is an implementation of the award-winning S language and system (Becker and Cham-
bers 1984; Becker, Chambers, and Wilks 1988; Chambers and Hastie 1992; Chambers 1998). R
and R2OpenBUGS are available from CRAN (Comprehensive R Archive Network), i.e., http:
//CRAN.R-Project.org or one of its mirrors. R2OpenBUGS could be ported to the commercial
S implementation S-Plus. Minor adaptions would be needed since S-Plus lacks some of R’s
functions and capabilities. If an internet connection is available, R2OpenBUGS can be installed
by typing install.packages("R2OpenBUGS") at the R command prompt. Do not forget to load
the package with library("R2OpenBUGS").

The package coda by Plummer, Best, Cowles, and Vines (2004) is very useful for the analysis of
OpenBUGS’ output, the reader might want to install this package as well. The CRAN package
boa (Bayesian Output Analysis Program) by Smith (2004) has similar aims. JAGS (Just Another
Gibbs Sampler) by Plummer (2003) is a program for analysis of Bayesian hierarchical models using
Gibbs sampling that aims for the same functionality as classic BUGS. JAGS is developed to work
closely together with R and the coda package.

In this paper, we give two examples, involving educational testing experiments in schools (cf. Sec-
tion 2.1), and incidence of childhood leukaemia depending on benzene emissions (cf. Section 2.2).
Details on the functions of R2OpenBUGS are given in Section 3. These functions automatically
write the data and a script in a format readable by OpenBUGS for processing in batch mode, and
call OpenBUGS from R. After the OpenBUGS process has finished, it is possible either to read the
resulting data into R by the package itself or to use the facilities of the coda package for further
analyses of the output. In Section 4, we demonstrate how to apply the functions provided by
R2OpenBUGS on the examples’ data, and how to analyze the output both with package coda and
with R2OpenBUGS’s methods to plot() and print() the output.

2. Examples

In this Section, we introduce two examples which will be continued in Section 4.

2.1. Schools data

The Scholastic Aptitude Test (SAT) measures the aptitude of high-schoolers in order to help col-
leges to make admissions decisions. It is divided into two parts, verbal (SAT-V) and mathematical
(SAT-M). Our data comes from the SAT-V (Scholastic Aptitude Test-Verbal) on eight different
high schools, from an experiment conducted in the late 1970s. SAT-V is a standard multiple choice
test administered by the Educational Testing Service. This Service was interested in the effects of
coaching programs for each of the selected schools.

The study included coached and uncoached pupils, about sixty in each of the eight different
schools; see Rubin (1981). All of them had already taken the PSAT (Preliminary SAT) which
results were used as covariates. For each school, the estimated treatment effect and the standard
error of the effect estimate are given. These are calculated by an analysis of covariance adjustment
appropriate for a completely randomized experiment (Rubin 1981). This example was analyzed
using a hierarchical normal model in Rubin (1981) and Gelman, Carlin, Stern, and Rubin (2003,
Section 5.5).

2.2. Leukaemia registration data

Spatial data usually arises on different, non-nesting spatial scales. One example is childhood
leukaemia registration data analyzed by Best, Cockings, Bennett, Wakefield, and Elliott (2001)
using ecologic regression. Data are given for Greater London bounded by the M25 orbital motor-
way. The data are not available as an example in R2OpenBUGS but we use the example here to
illustrate alternative calls to the bugs() function and output analysis using the coda package.

http://www.R-project.org/
http://CRAN.R-Project.org
http://CRAN.R-Project.org

Sibylle Sturtz, Uwe Ligges, Andrew Gelman 3

0

1

2

3

4

5

6

Figure 1: Observed number of cases of childhood leukaemia in 1985–1996

0

1

2

Figure 2: Expected number of cases of childhood leukaemia in 1985–1996

The observed number of leukaemia cases among children under 15 years old is given at ward level.
Census wards are administrative areas containing approximately 5000 to 10 000 people. Central
London is divided into 873 wards. The number of incident cases of leukaemia in children is available
from 1985 until 1996 from the Office of National Statistics and the Thames Cancer Registry. A
plot of these numbers is given in Figure 1.

Additionally, the number of expected cases (cf. Fig. 2) is calculated on the same resolution using
population numbers for different age-sex-strata and the national leukaemia rate for the correspond-
ing strata, for details see Best et al. (2001).

It is assumed that benzene emissions have an effect on the incidence rate of leukaemia. Benzene
emission rates are available in tonnes per year from an atmospheric emissions inventory for London
(Buckingham, Clewley, Hutchinson, Sadler, and Shah 1997) produced by the London Research
Centre. They are provided at 1km × 1km grid cells, giving 2132 grid cells in total. Their spatial
distribution is shown in Figure 3.

For further details on the data see Best et al. (2001).

We model these data by Poisson-Gamma models introduced by Best, Ickstadt, and Wolpert (2000)
using OpenBUGS. A linking matrix containing information which grid cell belongs to which ward

4 R2OpenBUGS:A Package for Running OpenBUGS from R

0

1

2

3

Figure 3: Benzene emissions in tonnes per year

and to which amount is required. This matrix is calculated using R. Unfortunately, OpenBUGS
does not support a list format such as directly produced by R. Therefore, the data must be provided
as a matrix with 2132 rows and 873 columns (or vice versa). Most of the entries of this matrix
are zeroes, but using dump() to export it from R yields in a file size of 14.2 MB. Unfortunately,
opening a file of such size really slows OpenBUGS down, and it was not even possible on some
of our PCs. Importing data written by our R2OpenBUGS package does not make any problems
using the batch mode, probably due to memory management issues in OpenBUGS.

3. Implementation

The implementation of the R2OpenBUGS package is straightforward. The“main” function bugs()

is intended to be called by the user. In principle, it is a wrapper for several other functions called
therein step by step as follows:

1. bugs.data.inits() writes the data files ‘data.txt’, and ‘inits1.txt’, ‘inits2.txt’, ... into the
working directory. These files will be used by OpenBUGS during batch processing.

In particular, input for OpenBUGS must not exceed a certain number of digits. Moreover, it
needs an E instead of an e in scientific notation. Scientific notation is particularly desirable
because of the “number of digits” limitation. The default (digits = 5) is to, e.g., reformat
the number 123456.789 to 1.23457E+05.

2. bugs.script() writes the file ‘script.txt’ that is used by OpenBUGS for batch processing.

3. bugs.run() updates the lengths of the adaptive phases in the WinBUGS registry (using
a function bugs.update.settings()), calls WinBUGS, and runs it in batch mode with
‘script.txt’.

4. bugs.sims() is only called if the argument codaPkg has been set to FALSE (the default).
Otherwise bugs() returns the filenames of stored data. These can, for example, be imported
by package coda (see the example in Section 4.2, page 10), which provides functions for
convergence diagnostics, calculation of Monte Carlo estimates, trace plots, and so forth.

The function bugs.sims() reads simulations from OpenBUGS into R (not necessarily called
by bugs() itself), formats them, monitors convergence, performs convergence checks, and
computes medians and quantiles. It also prepares the output for bugs() itself.

Sibylle Sturtz, Uwe Ligges, Andrew Gelman 5

These functions are not intended to be called by the user directly. Arguments are passed from
bugs() to the other functions, if appropriate. A shortened help file of bugs() listing all arguments
is given in Appendix A; for the full version type ?bugs in R after having installed and loaded the
package R2OpenBUGS (see Section 1).

As known from OpenBUGS, one must specify the data in form of a list, with list names equal to
the names of data in the corresponding OpenBUGS model. Alternatively, it is possible to specify a
vector or list of names (of mode character). In that case objects of that names are looked for in the
environment in which bugs() has been called (usually that is the user’s Workspace, .GlobalEnv).
If data have already been written in a file called ‘data.txt’ to the working directory, it is possible
to specify data = "data.txt". One will usually want to supply initial values. This can be done
either in the form of a function inits() that creates these values, so that different chains can
be automatically initialized at different points (see Section 4.1), or by specifying them directly
(see Section 4.2). If inits() is not specified, bugs() just uses the starting values created by
OpenBUGS; but in practice OpenBUGS can crash when reasonable initial values are not specified,
and so we recommend constructing a simple inits() function to simulate reasonable starting
points (Gelman et al. 2003, Section C.2). It is also necessary to specify which parameters should
be saved for monitoring by specifying parameters.to.save.

The user might also want to change the defaults for the length of the burn-in (n.burnin, which
defaults to half the length of the chain) period for every MCMC run and the number of iterations
(n.iter, default value 3) that are used to calculate Monte Carlo estimates. The specification of a
thinning parameter (n.thin) is possible as well; this is useful when the number of parameters is
large, to keep the saved output to a reasonably-sized R object.

By setting the argument debug = TRUE, OpenBUGS remains open after the run. This way it is
possible to find errors in the code or the data structure, or even to work with that software as in
a usual run. This feature is not available with Linux execution.

It is possible to run one or more Markov chains. The number of chains (n.chains) must be specified
together with the chains’ initial values (inits). If more than one Markov chain is requested and
codaPkg is set to FALSE, the convergence diagnostic R̂ (Brooks and Gelman 1998) is calculated by
bugs.sims() for each of the saved parameters.

Since the communication between OpenBUGS and R is based on files, rather huge files will be
saved in the working directory by the bugs() call, either files to be read in by bugs() itself, or by
the coda package. The user might want to delete those files after the desired contents has been
imported into R, and save those objects, e.g., as compressed R data files.

The function bugs() returns a rather complex object of class bugs, if called with argument
codaPkg = FALSE. In order to look at the structure of such an object, type str(objectname).
For convenience, R2OpenBUGS provides methods corresponding to class bugs for the generic
functions print() and plot().

So that user will not be overwhelmed with information; summaries of the output are provided
by the print() method. That is, some parameters of the bugs() call are summarized, and
mean, standard deviation, several quantiles of the parameters and convergence diagnostics based
on Gelman and Rubin (1992) are printed. See the example in Section 4.1, page 7, for a typical
output. As with Spiegelhalter, Best, Carlin, and van der Linde (2002), the DIC computed by
bugs.sims() is defined as the posterior mean of the deviance plus pD, the estimated effective
number of parameters in the posterior distribution. We define pD as half the posterior variance of
the deviance and estimate it as half the average of the within-chain variances of the deviance.1

The plot() for objects of class bugs provides information condensed in some plots conveniently
arranged within the same graphics device. For an example, see Figure 4 in Section 4.1. It is

1In contrast, Spiegelhalter et al. (2002), and OpenBUGS, define pD as the posterior mean of the deviance
evaluated at the posterior mean of the parameter values. We cannot use that definition because the deviance
function is not available to our program, which calls OpenBUGS from the “outside”. Both definitions of pD—ours
and that introduced by Spiegelhalter et al. (2002)—can be derived from the asymptotic χ2 distribution of the
deviance relative to its minimum (Gelman et al. 2003, Section 6.7). We make no claim that our measure of pD is
superior to that of Spiegelhalter et al. (2002); we choose this measure purely because it is computationally possible
given what is available to us from the OpenBUGS output.

6 R2OpenBUGS:A Package for Running OpenBUGS from R

intended to adapt this function to work with MCMC output in general, even if obtained from
software other than OpenBUGS.

4. Examples continued

The Examples introduced in Section 4 are continued in this Section. We apply the functions
provided by R2OpenBUGS to the examples’ data and analyze the output.

4.1. Schools data

Schools example data (see Section 2.1) are available with the R2OpenBUGS package:

> data(schools)

> schools

school estimate sd

1 A 28.39 14.9

2 B 7.94 10.2

3 C -2.75 16.3

4 D 6.82 11.0

5 E -0.64 9.4

6 F 0.63 11.4

7 G 18.01 10.4

8 H 12.16 17.6

For modeling these data, we use a hierarchical model as proposed by Gelman et al. (2003, Section
5.5). We assume a normal distribution for the observed estimate for each school with mean theta

and inverse-variance tau.y. The inverse-variance is given as 1/sigma.y2 and its prior distribu-
tion is uniform on (0,1000). For the mean theta, we employ another normal distribution with
mean mu.theta and inverse-variance tau.theta. For their prior distributions, see the following
OpenBUGS code:

model {

for (j in 1:J)

{

y[j] ~ dnorm (theta[j], tau.y[j])

theta[j] ~ dnorm (mu.theta, tau.theta)

tau.y[j] <- pow(sigma.y[j], -2)

}

mu.theta ~ dnorm (0.0, 1.0E-6)

tau.theta <- pow(sigma.theta, -2)

sigma.theta ~ dunif (0, 1000)

}

This model must be stored in a separate file, e.g. ‘schools.bug’2, in an appropriate directory, say
c:/schools/. In R the user must prepare the data inputs the bugs() function needs. This can
be a list containing the name of each data vector, e.g.

> J <- nrow(schools)

> y <- schools$estimate

> sigma.y <- schools$sd

> data <- list ("J", "y", "sigma.y")

2Emacs Speaks Statistics (ESS) by Rossini, Heiberger, Sparapani, Mächler, and Hornik (2004), a package avail-
able with Gnu Emacs (Stallmann 1999), recognizes and properly formats Bugs model files that have the .bug
extension.

Sibylle Sturtz, Uwe Ligges, Andrew Gelman 7

Using these data and the model file, we can run an MCMC simulation to get estimates for theta,
mu.theta and sigma.theta. Before running, the user must decide how many chains to be run
(n.chain = 3) for how many iterations (n.iter = 1000). If the length of burn-in is not specified,
n.burnin = floor(n.iter/2) is used, that is, 500 in this example. Additionally, the user must
specify initial values for the chains, for example by writing a function. This can be done by

> inits <- function(){

+ list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),

+ sigma.theta = runif(1, 0, 100))

+ }

Now, the user can start the MCMC simulation by typing

> schools.sim <- bugs(data, inits, model.file = "c:/schools/schools.bug",

+ parameters = c("theta", "mu.theta", "sigma.theta"),

+ n.chains = 3, n.iter = 1000)

in R. For other available arguments, see Appendix A.

The results in objects schools.sim can conveniently be printed by print(schools.sim). The
generic function print() calls the print method for an object of class bugs provided byR2OpenBUGS.
For this example, you will get something like

> print(schools.sim)

Inference for Bugs model at "c:/schools/schools.bug"

3 chains, each with 1000 iterations (first 500 discarded)

n.sims = 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

theta[1] 11.1 9.1 -3.0 5.0 10.0 16.0 31.8 1.1 39

theta[2] 7.6 6.6 -4.7 3.3 7.8 11.6 21.1 1.1 42

theta[3] 5.7 8.4 -12.5 0.6 6.1 10.8 21.8 1.0 150

theta[4] 7.1 7.0 -6.6 2.7 7.2 11.5 21.0 1.1 42

theta[5] 5.1 6.8 -9.5 0.7 5.2 9.7 18.1 1.0 83

theta[6] 5.7 7.3 -9.7 1.0 6.2 10.2 20.0 1.0 56

theta[7] 10.4 7.3 -2.1 5.3 9.8 15.3 25.5 1.1 27

theta[8] 8.3 8.4 -6.6 2.8 8.1 12.7 26.2 1.0 64

mu.theta 7.6 5.9 -3.0 3.7 8.0 11.0 19.5 1.1 35

sigma.theta 6.7 5.6 0.3 2.8 5.1 9.2 21.2 1.1 46

deviance 60.8 2.5 57.0 59.1 60.2 62.1 66.6 1.0 170

pD = 3 and DIC = 63.8 (using the rule, pD = var(deviance)/2)

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC is an estimate of expected predictive error (lower deviance is better).

Additionally, the user can generate a plot of the results by typing plot(schools.sim). The
resulting plot is given in Figure 4. In this plot, the left column shows a quick summary of
inference and convergence (R̂ is close to 1.0 for all parameters, indicating good mixing of the three
chains and thus approximate convergence); and the right column shows inferences for each set
of parameters. As can be seen in the right column, R2OpenBUGS uses the parameter names in
OpenBUGS to structure the output into scalar, vector, and arrays of parameters, in addition to
storing the parameters as a long vector.

For the interpretation of these results see Gelman et al. (2003, Section 5.5).

4.2. Leukaemia registration data

The leukaemia registration data (see Section 2.2) are used to show data modeling and output
reading into R using the coda package. A simple model for these data looks as follows:

8 R2OpenBUGS:A Package for Running OpenBUGS from R

80% interval for each chain R−hat

−20

−20

0

0

20

20

40

40

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

1 1.5 2+

theta[1] ●●●

[2] ●●●

[3] ●●●

[4] ●●●

[5] ●●●

[6] ●●●

[7] ●●●

[8] ●●●

mu.theta ●●●

sigma.theta ●●●

medians and 80% intervals

theta

−20

0

20

40

●

●
●

111111111

●
●●

222222222

●
●●

333333333

●

●●

444444444

●
●●

555555555

●
●●

666666666

●

●
●

777777777

●
●●

888888888

mu.theta

−10

0

10

20

●

●●

sigma.theta

0

10

20

●

●
●

deviance

55

60

65

●
●●

Bugs model at "c:/schools/schools.bug", 3 chains, each with 1000 iterations

Figure 4: Plot produced by R2OpenBUGS package for the schools example.

model{

beta.0 ~ dgamma(a.0, tau.0)

beta.benz ~ dgamma(a.benz, tau.benz)

a.0 <- 0.575

tau.0 <- a.0*2

a.benz <- 0.575

tau.benz <- a.benz*2

Sibylle Sturtz, Uwe Ligges, Andrew Gelman 9

for (i in 1:I)

{

count[i] ~ dpois(lambda[i])

lambda[i] <- p[i]*expect[i]

for (j in 1:J)

{

prop[j,i] <- gamma[j,i]*(benz[j] - benzbar)

}

p[i]<- beta.0 + beta.benz*sum(prop[,i])

}

}

Here count denotes the number of observed incidences of childhood leukaemia in ward i. These
are assumed to be Poisson distributed with mean lambda depending on the number of expected
cases expect in ward i and an area-specific risk rate p. For calculation of this area specific risk
rate we use an intercept beta.0 and a term depending on the weighted sum of benzene emissions
benz in each grid cell j. The weights are chosen proportional to the amount of area that ward i

and grid cell j have in common.

In R we can define all these data and then initialize the model. The data needed for this example
are

benzbar: arithmetic mean of all benzene values,

benz: a vector containing benzene emissions of all 2132 grid cells,

expect: expected number of cases of childhood leukaemia in each of the 873 wards,

count: observed number of childhood leukaemia in these wards,

gamma: a 2132× 873 matrix containing the amount of area each grid cell and each ward have in
common,

J: total number of grid cells, i.e. 2132, and

I: total number of ward cells, i.e. 873.

The parameters we want to store are regression coefficients beta.0 and beta.benz as well as p,
the area specific relative risk compared to the reference rate. This reference rate was used to
calculate the expected number of cases in each ward.

Since we want to use the coda package for reading the data into OpenBUGS, we specify codaPkg = TRUE

in the bugs() call:

> data <- list(benzbar = mean(benz), benz = benz, expect = expect,

+ count = count, gamma = gamma, J = J, I = I)

> parameters <- c("beta.0", "beta.benz", "p")

> inits1 <- list(beta.0 = 1, beta.benz = 1)

> inits2 <- list(beta.0 = 0.5, beta.benz = 0.5)

> inits <- list(inits1, inits2)

> model <- bugs(data, inits, parameters, model.file = "c:/model.bug",

+ n.chains = 2, n.iter = 8000, n.burnin = 5000, n.thin = 1,

+ codaPkg = TRUE)

10 R2OpenBUGS:A Package for Running OpenBUGS from R

Starting with, e.g.,

> library("coda")

> codaobject <- read.bugs(model)

> plot(codaobject)

it is now possible to use the coda package for output analyses.

Acknowledgments

The work of Uwe Ligges has been supported by the Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 475. The work of Andrew Gelman has been supported by the U.S. National
Science Foundation.

References

Becker RA, Chambers JM (1984). S. An Interactive Environment for Data Analysis and Graphics.
Wadsworth and Brooks/Cole, Monterey.

Becker RA, Chambers JM, Wilks AR (1988). The NEW S Language — A Programming Environ-
ment for Data Analysis and Graphics. Chapman & Hall, New York.

Best NG, Cockings S, Bennett J, Wakefield J, Elliott P (2001). “Ecological Regression Analysis of
Environmental Benzene Exposure and Childhood Leukaemia: Sensitivity to Data Inaccuracies,
Geographical Scale and Ecological Bias.” Journal of the Royal Statistical Society, Series A, 164,
155–174.

Best NG, Ickstadt K, Wolpert RL (2000). “Spatial Poisson Regression for Health and Exposure
Data Measured at Disparate Resolutions.” Journal of the American Statistical Association, 95,
1076–1088.

Brooks SB, Gelman A (1998). “General Methods for Monitoring Convergence of Iterative Simula-
tions.” Journal of Computational and Graphical Statistics, 7, 434–455.

Buckingham C, Clewley L, Hutchinson D, Sadler L, Shah S (1997). “London Atmospheric Emis-
sions Inventory.” Technical report, London Research Centre, London.

Casella G, George E (1992). “Explaining the Gibbs Sampler.” American Statistician, 46, 167–174.

Chambers JM (1998). Programming with Data. A Guide to the S Language. Springer-Verlag, New
York.

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall, New York.

Gelfand AE, Smith AFM (1990). “Sampling-based Approaches to Calculating Marginal Densities.”
Journal of the American Statistical Association, 85, 398–409.

Gelman A (2004). “Exploratory Data Analysis for Complex Models (with Discussion).” Journal
of Computational and Graphical Statistics, 13(4), 755–779.

Gelman A, Carlin J, Stern H, Rubin D (2003). Bayesian Data Analysis. CRC Press, Boca Raton,
2 edition.

Gelman A, Rubin D (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7, 457–511.

Geman S, Geman D (1984). “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restora-
tion of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

Sibylle Sturtz, Uwe Ligges, Andrew Gelman 11

Gilks W, Richardson S, Spiegelhalter D (1996). Markov Chain Monte Carlo in Practice. Chapman
& Hall, London.

Metropolis N, Rosenbluth A, Rosenbluth M, Teller H, Teller E (1953). “Equation of State Calcu-
lations by Fast Computing Machines.” Journal of Chemical Physics, 21, 1087–1092.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using
Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), “Proceedings of the 3rd Inter-
national Workshop on Distributed Statistical Computing, March 20–22,” Technische Univer-
sität Wien, Vienna. ISSN 1609-395X. URL http://www.ci.tuwien.ac.at/Conferences/

DSC-2003/Proceedings/.

Plummer M, Best NG, Cowles K, Vines K (2004). coda: Output Analysis and Diagnostics for
MCMC. R package version 0.9-1, URL http://www-fis.iarc.fr/coda/.

R Development Core Team (2004). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Rossini AJ, Heiberger RM, Sparapani RA, Mächler M, Hornik K (2004). “Emacs Speaks Statistics:
A Multiplatform, Multipackage Development Environment for Statistical Analysis.” Journal of
Computational and Graphical Statistics, 13(1), 247–261.

Rubin DB (1981). “Estimation in Parallel Randomized Experiments.” Journal of Educational
Statistics, 6, 377–400.

Smith BJ (2004). boa: Bayesian Output Analysis Program (BOA) for MCMC. R package version
1.1.2-1, URL http://www.public-health.uiowa.edu/boa.

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002). “Bayesian Measures of Complexity
and Fit.” Journal of the Royal Statistical Society, SeriesB, 64, 583–639.

Spiegelhalter DJ, Thomas A, Best NG, Lunn D (2003). “WinBUGS Version 1.4 Users Manual.”
MRC Biostatistics Unit, Cambridge. URL http://www.mrc-bsu.cam.ac.uk/bugs/.

Stallmann RM (1999). The Emacs Editor. Boston. Version 20.7, URL http://www.gnu.org/.

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www-fis.iarc.fr/coda/
http://www.R-project.org
http://www.R-project.org
http://www.public-health.uiowa.edu/boa
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.gnu.org/

12 bugs

A. Help page for the function bugs()

This help page has been shortened.

bugs Run OpenBUGS from R

Description

The bugs function takes data and starting values as input. It automatically writes a OpenBUGS
script, calls the model, and saves the simulations for easy access in R.

Usage

bugs(data, inits, parameters.to.save, n.iter, model.file="model.txt",

n.chains=3, n.burnin=floor(n.iter / 2), n.thin=1,

saveExec=FALSE,restart=FALSE,

debug=FALSE, DIC=TRUE, digits=5, codaPkg=FALSE,

OpenBUGS.pgm=NULL, working.directory=NULL,

clearWD=FALSE, useWINE=FALSE, WINE=NULL,

newWINE=TRUE, WINEPATH=NULL, bugs.seed=1, summary.only=FALSE,

save.history=(.Platform$OS.type == "windows" | useWINE==TRUE),

over.relax = FALSE)

Arguments

data either a named list (names corresponding to variable names in the model.file) of
the data for the OpenBUGS model, or a vector or list of the names of the data
objects used by the model. If data is a one element character vector (such as
"data.txt"), it is assumed that data have already been written to the working
directory into that file, e.g. by the function bugs.data.

inits a list with n.chains elements; each element of the list is itself a list of starting
values for the OpenBUGS model, or a function creating (possibly random) initial
values. Alternatively, if inits=NULL, initial values are generated by OpenBUGS. If
inits is a character vector with n.chains elements, it is assumed that inits have
already been written to the working directory into those files, e.g. by the function
bugs.inits.

parameters.to.save

character vector of the names of the parameters to save which should be monitored

model.file File containing the model written in OpenBUGS code. The extension must be ‘.txt’.
The old convention allowing model.file to be named ‘.bug’ has been eliminated
because the new OpenBUGS feature that allows the program image to be saved
and later restarted uses the .bug extension for the saved images. Alternatively,
model.file can be an R function that contains a BUGS model that is written to
a temporary model file (see tempfile) using write.model.

n.chains number of Markov chains (default: 3)

n.iter number of total iterations per chain (including burn in; default: 2000)

n.burnin length of burn in, i.e. number of iterations to discard at the beginning. Default is
n.iter/2, that is, discarding the first half of the simulations.

n.thin Thinning rate. Must be a positive integer. The default is n.thin = 1. The
thinning is implemented in the OpenBUGS update phase, so thinned samples are
never stored, and they are not counted in n.burnin or n.iter. Setting n.thin=2,
doubles the number of iterations OpenBUGS performs, but does not change n.iter
or n.burnin. Thinning implemented in this manner is not captured in summaries
created by packages such as coda.

bugs 13

saveExec If TRUE, a re-startable image of the OpenBUGS execution is saved with basename(model.file)

and extension .bug in the working directory, which must be specified. The .bug
files can be large, so users should monitor them carefully and remove them when
not needed.

restart If TRUE, execution resumes with the final status from the previous execution
stored in the .bug file in the working directory. If n.burnin=0,additional iterations
are performed and all iterations since the previous burnin are used (including those
from past executions). If n.burnin>0, a new burnin is performed, and the previous
iterations are discarded, but execution continues from the status at the end of the
previous execution. When restart=TRUE, only n.burnin, n.iter, and saveExec

inputs should be changed from the call creating the .bug file, otherwise failed or
erratic results may be produced. Note the default has n.burnin>0.

debug if FALSE (default), OpenBUGS is closed automatically when the script has finished
running, otherwise OpenBUGS remains open for further investigation. The debug
option is not available for linux execution.

DIC logical; if TRUE (default), compute deviance, pD, and DIC. This is done in Open-
BUGS directly using the rule pD = Dbar - Dhat. If there are less iterations than
required for the adaptive phase, the rule pD=var(deviance) / 2 is used.

digits number of significant digits used for OpenBUGS input, see formatC

codaPkg logical; if FALSE (default) a bugs object is returned, if TRUE file names of Open-
BUGS output are returned for easy access by the coda package through function
read.bugs. A bugs object can be converted to an mcmc.list object as used by
the coda package with the method as.mcmc.list (for which a method is provided
by R2OpenBUGS).

OpenBUGS.pgm For Windows or WINE execution, the full path to the OpenBUGS executable.
For linux execution, the full path to the OpenBUGS shell script (not required if
OpenBUGS is in the user’s PATH variable). If NULL (unset) and the environ-
ment variable OpenBUGS_PATH is set the latter will be used as the default. If NULL
(unset), the environment variable OpenBUGS_PATH is unset and the global option
R2OpenBUGS.pgm is not NULL the latter will be used as the default. If nothing of the
former is set and OS is Windows, the most recent OpenBUGS version registered
in the Windows registry will be used as the default.

working.directory

sets working directory during execution of this function; OpenBUGS’ in- and out-
put will be stored in this directory; if NULL, a temporary working directory via
tempdir is used.

clearWD logical; indicating whether the files ‘data.txt’, ‘inits[1:n.chains].txt’, ‘log.odc’, ‘codaIndex.txt’,
and ‘coda[1:nchains].txt’ should be removed after OpenBUGS has finished. If set
to TRUE, this argument is only respected if codaPkg=FALSE.

useWINE logical; attempt to use the Wine emulator to run OpenBUGS. Default is FALSE.
If WINE is used, the arguments OpenBUGS.pgm and working.directory must be
given in form of Linux paths rather than Windows paths (if not NULL).

WINE Character, path to ‘wine’ binary file, it is tried hard (by a guess and the utilities
which and locate) to get the information automatically if not given.

newWINE Use new versions of Wine that have ‘winepath’ utility

WINEPATH Character, path to ‘winepath’ binary file, it is tried hard (by a guess and the
utilities which and locate) to get the information automatically if not given.

bugs.seed Random seed for OpenBUGS. Must be an integer between 1-14. Seed specification
changed between WinBUGS and OpenBUGS; see the OpenBUGS documentation
for details.

summary.only If TRUE, only a parameter summary for very quick analyses is given, temporary
created files are not removed in that case.

save.history If TRUE (the default), trace plots are generated at the end.

over.relax If TRUE, over-relaxed form of MCMC is used if available from OpenBUGS.

14 bugs

Details

To run:

1. Write a BUGS model in an ASCII file (hint: use write.model).

2. Go into R.

3. Prepare the inputs for the bugs function and run it (see Example section).

4. An OpenBUGS window will pop up and R will freeze up. The model will now run in OpenBUGS.
It might take awhile. You will see things happening in the Log window within OpenBUGS. When
OpenBUGS is done, its window will close and R will work again.

5. If an error message appears, re-run with debug=TRUE.

BUGS version support:

� OpenBUGS >=3.2.1

Operation system support:

� MS Windowsno problem

� Linux, intel processorsGUI display and graphics not available.

� Mac OS X and Unix in generalpossible with Wine emulation via useWINE=TRUE

If useWINE=TRUE is used, all paths (such as working.directory and model.file, must be given
in native (Unix) style, but OpenBUGS.pgm can be given in Windows path style (e.g. “c:/Program
Files/OpenBUGS/”) or native (Unix) style (e.g. “/path/to/wine/folder/dosdevices/c:/Program Files/OpenBUGS/OpenBUGS321/OpenBUGS.exe”).

Value

If codaPkg=TRUE the returned values are the names of coda output files written by OpenBUGS con-
taining the Markov Chain Monte Carlo output in the CODA format. This is useful for direct access
with read.bugs.

If codaPkg=FALSE, the following values are returned:

n.chains see Section ‘Arguments’

n.iter see Section ‘Arguments’

n.burnin see Section ‘Arguments’

n.thin see Section ‘Arguments’

n.keep number of iterations kept per chain (equal to (n.iter-n.burnin) / n.thin)

n.sims number of posterior simulations (equal to n.chains * n.keep)

sims.array 3-way array of simulation output, with dimensions n.keep, n.chains, and length of
combined parameter vector

sims.list list of simulated parameters: for each scalar parameter, a vector of length n.sims for
each vector parameter, a 2-way array of simulations, for each matrix parameter, a
3-way array of simulations, etc. (for convenience, the n.keep*n.chains simulations
in sims.matrix and sims.list (but NOT sims.array) have been randomly permuted)

sims.matrix matrix of simulation output, with n.chains*n.keep rows and one column for each
element of each saved parameter (for convenience, the n.keep*n.chains simu-
lations in sims.matrix and sims.list (but NOT sims.array) have been randomly
permuted)

summary summary statistics and convergence information for each saved parameter.

mean a list of the estimated parameter means

sd a list of the estimated parameter standard deviations

median a list of the estimated parameter medians

root.short names of argument parameters.to.save and “deviance”

long.short indexes; programming stuff

dimension.short dimension of indexes.short

bugs 15

indexes.short indexes of root.short

last.values list of simulations from the most recent iteration; they can be used as starting
points if you wish to run OpenBUGS for further iterations

pD an estimate of the effective number of parameters, for calculations see the section
“Arguments”.

DIC mean(deviance) + pD

Author(s)

Andrew Gelman, ⟨gelman@stat.columbia.edu⟩, http:/www.stat.columbia.edu/~gelman/bugsR/; mod-
ifications and packaged by Sibylle Sturtz, ⟨sturtz@statistik.tu-dortmund.de⟩, Uwe Ligges, and Neal
Thomas

References

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003): Bayesian Data Analysis, 2nd edition, CRC
Press.

Sturtz, S., Ligges, U., Gelman, A. (2005): R2WinBUGS: A Package for Running WinBUGS from R.
Journal of Statistical Software 12(3), 1-16.

See Also

print.bugs, plot.bugs, as well as coda and BRugs packages

Examples

An example model file is given in:

model.file <- system.file(package="R2OpenBUGS", "model", "schools.txt")

Let's take a look:

file.show(model.file)

Some example data (see ?schools for details):

data(schools)

schools

J <- nrow(schools)

y <- schools$estimate

sigma.y <- schools$sd

data <- list ("J", "y", "sigma.y")

inits <- function(){

list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),

sigma.theta=runif(1, 0, 100))

}

or alternatively something like:

inits <- list(

list(theta=rnorm(J, 0, 90), mu.theta=rnorm(1, 0, 90),

sigma.theta=runif(1, 0, 90)),

list(theta=rnorm(J, 0, 100), mu.theta=rnorm(1, 0, 100),

sigma.theta=runif(1, 0, 100))

list(theta=rnorm(J, 0, 110), mu.theta=rnorm(1, 0, 110),

sigma.theta=runif(1, 0, 110)))

parameters <- c("theta", "mu.theta", "sigma.theta")

Not run:

You may need to specify "OpenBUGS.pgm"

http:/www.stat.columbia.edu/~gelman/bugsR/

16 bugs

also you need write access in the working directory:

schools.sim <- bugs(data, inits, parameters, model.file,

n.chains=3, n.iter=5000)

print(schools.sim)

plot(schools.sim)

End(Not run)

	Introduction
	Examples
	Schools data
	Leukaemia registration data

	Implementation
	Examples continued
	Schools data
	Leukaemia registration data

	Help page for the function bugs()
	bugs

